References

Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19(6), 716–723.
Arlot, S., & Celisse, A. (2010). A survey of cross-validation procedures for model selection. Statistics Surveys, 4, 40–79. https://doi.org/10.1214/09-SS054
Blurton, S. P., Kesselmeier, M., & Gondan, M. (2012). Fast and accurate calculations for cumulative first-passage time distributions in wiener diffusion models. Journal of Mathematical Psychology, 56(6), 470–475. https://doi.org/https://doi.org/10.1016/j.jmp.2012.09.002
Broadbent, D. E. (1957). A mechanical model for human attention and immediate memory. Psychological Review, 64(3), 205–215.
Brown, S., & Heathcote, A. (2008). The simplest complete model of choice response time: Linear ballistic accumulation. Cognitive Psychology, 57, 153–178.
Browne, M. W. (2000). Cross-validation methods. Journal of Mathematical Psychology, 44(1), 108–132. https://doi.org/10.1006/jmps.1999.1279
Busemeyer, J. R., & Townsend, J. T. (1993). Decision field theory: A dynamic–cognitive approach to decision making in an uncertain environment. Psychological Review, 100(3), 432–459.
Busemeyer, J. R., & Wang, Y.-M. (2000). Model comparisons and model selections based on generalization criterion methodology. Journal of Mathematical Psychology, 44(1), 171–189. https://doi.org/10.1006/jmps.1999.1282
Cox, G. E., Palmeri, T. J., Logan, G. D., Smith, P. L., & Schall, J. D. (2022). Salience by competitive and recurrent interactions: Bridging neural spiking and computation in visual attention. Psychological Review, 129(5), 1144–1182. https://doi.org/10.1037/rev0000366
Cox, G. E., Palmeri, T. J., Logan, G. D., Smith, P. L., & Schall, J. D. (2024). Spiking, salience, and saccades: Using cognitive models to bridge the gap between “how” and “why.” In B. U. Forstmann & B. M. Turner (Eds.), An introduction to model-based cognitive neuroscience (pp. 119–152). Springer International Publishing. https://doi.org/10.1007/978-3-031-45271-0_6
Cox, G. E., & Shiffrin, R. M. (2024). Computational models of event memory. In M. J. Kahana & A. Wagner (Eds.), Oxford handbook of human memory. Oxford University Press.
Dennett, D. (1980). The milk of human intentionality. Behavioral and Brain Sciences, 3(3), 428–430. https://doi.org/10.1017/s0140525x0000580x
Diederich, A. (1997). Dynamic stochastic models for decision making under time constraints. Journal of Mathematical Psychology, 41(3), 260–274. https://doi.org/10.1006/jmps.1997.1167
Donkin, C., Brown, S., Heathcote, A., & Wagenmakers, E.-J. (2011). Diffusion versus linear ballistic accumulation: Different models but the same conclusions about psychological processes? Psychonomic Bulletin & Review, 55, 140–151.
Elman, J. L. (1990). Finding structure in time. Cognitive Science, 14(2), 179–211. https://doi.org/10.1207/s15516709cog1402_1
Garner, W. R., & Felfoldy, G. L. (1970). Integrality of stimulus dimensions in various types of information processing. Cognitive Psychology, 1, 225–241.
Gelman, A., Hwang, J., & Vehtari, A. (2014). Understanding predictive information criteria for bayesian models. Statistics and Computing, 24(6), 997–1016. https://doi.org/10.1007/s11222-013-9416-2
Gillespie, N. F., & Cox, G. E. (2024). Perception and memory for novel auditory stimuli: Similarity, serial position, and list homogeneity. PsyArXiv. https://doi.org/10.31234/osf.io/n294a
Gondan, M., Blurton, S. P., & Kesselmeier, M. (2014). Even faster and even more accurate first-passage time densities and distributions for the wiener diffusion model. Journal of Mathematical Psychology, 60, 20–22. https://doi.org/https://doi.org/10.1016/j.jmp.2014.05.002
Grossberg, S. (1980). How does a brain build a cognitive code? Psychological Review, 87(1), 1–51. https://doi.org/10.1037/0033-295X.87.1.1
Hanes, D. P., & Schall, J. D. (1996). Neural control of voluntary movement initiation. Science, 274(5286), 427–430. https://doi.org/10.1126/science.274.5286.427
Harding, B., Goulet, M.-A., Jolin, S., Tremblay, C., Villeneuve, S.-P., & Durand, G. (2016). Systems factorial technology explained to humans. The Quantitative Methods for Psychology, 12(1), 39–56.
Hartmann, R., & Klauer, K. C. (2021). Partial derivatives for the first-passage time distribution in wiener diffusion models. Journal of Mathematical Psychology, 103, 102550. https://doi.org/https://doi.org/10.1016/j.jmp.2021.102550
Hartmann, R., & Klauer, K. C. (2023). WienR: Derivatives of the first-passage time density and cumulative distribution function, and random sampling from the (truncated) first-passage time distribution. https://CRAN.R-project.org/package=WienR
Hebb, D. O. (1949). The organization of behavior: A neuropsychological theory. Wiley.
Houpt, J. W., Blaha, L. M., McIntire, J. P., Havig, P. R., & Townsend, J. T. (2014). Systems factorial technology with R. Behavior Research Methods, 46, 307–330.
Kruschke, J. K. (2009). Highlighting: A canonical experiment. In Psychology of learning and motivation (Vol. 51, pp. 153–185). Elsevier.
Kruschke, J. K. (2011). Models of attentional learning. In E. M. Pothos & A. J. Wills (Eds.), Formal approaches in categorization (pp. 120–152). Cambridge University Press.
Landauer, T. K., & Dumais, S. T. (1997). A solution to Plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological Review, 104(2), 211–240.
Mackintosh, N. J. (1975). A theory of attention: Variations in the associability of stimuli with reinforcement. Psychological Review, 82(4), 276–298.
Marr, D. (1982). Vision: A computational investigation into the human representation and processing of visual information. W.H. Freeman.
McClelland, J. L., McNaughton, B. L., & O’Reilly, R. C. (1995). Why there are complementary learning systems in the hippocampus and neocortex: Insights from the successes and failures of connectionist models of learning and memory. Psychological Review, 102(3), 419–457.
Medin, D. L., Altom, M. W., Edelson, S. M., & Freko, D. (1982). Correlated symptoms and simulated medical classification. Journal of Experimental Psychology: Learning, Memory, and Cognition, 8(1), 37–50. https://www.proquest.com/scholarly-journals/correlated-symptoms-simulated-medical/docview/614362118/se-2
Murdock, B. B. (1982). A theory for the storage and retrieval of item and associative information. Psychological Review, 89(3), 609–626.
Navarro, D. J. (2018). Between the devil and the deep blue sea: Tensions between scientific judgement and statistical model selection. Computational Brain & Behavior. https://doi.org/10.1007/s42113-018-0019-z
Navarro, D. J., & Fuss, I. G. (2009). Fast and accurate calculations for first-passage times in wiener diffusion models. Journal of Mathematical Psychology, 53(4), 222–230. https://doi.org/https://doi.org/10.1016/j.jmp.2009.02.003
Neisser, U. (1967). Cognitive psychology. Appleton-Century-Crofts.
Nosofsky, R. M. (1986). Attention, similarity, and the identification-categorization relationship. Journal of Experimental Psychology: General, 115(1), 39–57.
Nosofsky, R. M. (1992). Similarity scaling and cognitive process models. Annual Review of Psychology, 43, 25–53.
Nosofsky, R. M., Cox, G. E., Cao, R., & Shiffrin, R. M. (2014). An exemplar-familiarity model predicts short-term and long-term probe recognition across diverse forms of memory search. Journal of Experimental Psychology: Learning, Memory, and Cognition, 40(6), 1524–1539.
Nosofsky, R. M., Little, D. R., Donkin, C., & Fific, M. (2011). Short-term memory scanning viewed as exemplar-based categorization. Psychological Review, 118(2), 280–315.
Nosofsky, R. M., & Palmeri, T. J. (1997). An exemplar-based random walk model of speeded classification. Psychological Review, 104(2), 266–300.
O’Connor, C., & Weatherall, J. O. (2018). Scientific polarization. European Journal for Philosophy of Science, 8(3), 855–875. https://doi.org/10.1007/s13194-018-0213-9
Philiastides, M. G., Ratcliff, R., & Sajda, P. (2006). Neural representation of task difficulty and decision making during perceptual categorization: A timing diagram. Journal of Neuroscience, 26(35), 8965–8975. https://doi.org/10.1523/JNEUROSCI.1655-06.2006
Piironen, J., & Vehtari, A. (2017). Comparison of bayesian predictive methods for model selection. Statistics and Computing, 27(3), 711–735. https://doi.org/10.1007/s11222-016-9649-y
Posner, M. I., & Keele, S. W. (1968). On the genesis of abstract ideas. Journal of Experimental Psychology, 77, 353–363. https://doi.org/10.1037/h0025953
Purcell, B. A., Heitz, R. P., Cohen, J. Y., Schall, J. D., Logan, G. D., & Palmeri, T. J. (2010). Neurally constrained modeling of perceptual decision making. Psychological Review, 117(4), 1113–1143. https://doi.org/10.1037/a0020311
Purcell, B. A., Schall, J. D., Logan, G. D., & Palmeri, T. J. (2012). From salience to saccades: Multiple-alternative gated stochastic accumulator model of visual search. Journal of Neuroscience, 32(10), 3433–3446. https://doi.org/10.1523/JNEUROSCI.4622-11.2012
Raab, D. H. (1962). Statistical facilitation of simple reaction times. Transactions of the New York Academy of Sciences, 24(5 Series II), 574–590.
Rae, B., Heathcote, A., Donkin, C., Averell, L., & Brown, S. (2014). The hare and the tortoise: Emphasizing speed can change the evidence used to make decisions. Journal of Experimental Psychology: Learning, Memory, and Cognition, 40(5), 1226–1243.
Raftery, A. E. (1995). Bayesian model selection in social research. Sociological Methodology, 25, 111–163. https://doi.org/10.2307/271063
Ratcliff, R. (1978). A theory of memory retrieval. Psychological Review, 85(2), 59–108.
Ratcliff, R., & Rouder, J. N. (1998). Modeling response times for two-choice decisions. Psychological Science, 9(5), 347–356.
Rescorla, R. A., & Wagner, A. R. (1972). A theory of Pavlovian conditioning: Variations in the effectiveness of reinforcement and nonreinforcement. In A. H. Black & W. F. Prokasy (Eds.), Classical conditioning II: Current research and theory (pp. 64–99). Appleton–Century–Crofts.
Rogers, T. T., & McClelland, J. L. (2004). Semantic cognition: A parallel distributed processing approach. MIT Press.
Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning internal representations by error propagation. In D. E. Rumelhart & J. L. McClelland (Eds.), Parallel distributed processing: Vol. I. The MIT Press.
Schall, J. D. (2004). On building a bridge between brain and behavior. Annual Review of Psychology, 55(1), 23–50. https://doi.org/10.1146/annurev.psych.55.090902.141907
Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6(2), 461–464.
Shadlen, M. N., & Newsome, W. T. (2001). Neural basis of a perceptual decision in the parietal cortex (area LIP) of the rhesus monkey. Journal of Neurophysiology, 86(4), 1916–1936. https://doi.org/10.1152/jn.2001.86.4.1916
Shepard, R. N. (1962a). The analysis of proximities: Multidimensional scaling with an unknown distance function. I. Psychometrika, 27(2), 125–140. https://doi.org/https://doi.org/10.1007/BF02289630
Shepard, R. N. (1962b). The analysis of proximities: Multidimensional scaling with an unknown distance function. II. Psychometrika, 27(3), 219–246. https://doi.org/https://doi.org/10.1007/BF02289621
Singmann, H., Kellen, D., Cox, G. E., Chandramouli, S. H., Davis-Stober, C. P., Dunn, J. C., Gronau, Q. F., Kalish, M. L., McMullin, S. D., Navarro, D. J., & Shiffrin, R. M. (2022). Statistics in the service of science: Don’t let the tail wag the dog. Computational Brain & Behavior.
Smith, E. R., & Conrey, F. R. (2007). Agent-based modeling: A new approach for theory building in social psychology. Personality and Social Psychology Review, 11(1), 87–104. https://doi.org/10.1177/1088868306294789
Smith, P. L. (2000). Stochastic dynamic models of response time and accuracy: A foundational primer. Journal of Mathematical Psychology, 44(3), 408–463.
Stone, M. (1977). An asymptotic equivalence of choice of model by cross-validation and Akaike’s criterion. Journal of the Royal Statistical Society. Series B (Methodological), 39(1), 44–47.
Teller, D. Y. (1984). Linking propositions. Vision Research, 24(10), 1233–1246. https://doi.org/10.1016/0042-6989(84)90178-0
Teodorescu, A. R., & Usher, M. (2013). Disentangling decision models: From independence to competition. Psychological Review, 120(1), 1–38.
Tillman, G., Van Zandt, T., & Logan, G. D. (2020). Sequential sampling models without random between-trial variability: The racing diffusion model of speeded decision making. Psychonomic Bulletin & Review, 27(5), 911–936. https://doi.org/10.3758/s13423-020-01719-6
Townsend, J. T., & Nozawa, G. (1995). Spatio-temporal properties of elementary perception: An investigation of parallel, serial, and coactive theories. Journal of Mathematical Psychology, 39, 321–359.
Trueblood, J. S., Holmes, W. R., Seegmiller, A. C., Douds, J., Compton, M., Szentirmai, E., Woodruff, M., Huang, W., Stratton, C., & Eichbaum, Q. (2018). The impact of speed and bias on the cognitive processes of experts and novices in medical image decision-making. Cognitive Research: Principles and Implications, 3, 1–14.
Tuerlincx, F. (2004). The efficient computation of the cumulative distribution and probability density functions in the diffusion model. Behavior Research Methods, Instruments, & Computers, 36(4), 702–716.
Turner, B. M., Forstmann, B. U., Wagenmakers, E.-J., Brown, S. D., Sederberg, P. B., & Steyvers, M. (2013). A bayesian framework for simultaneously modeling neural and behavioral data. NeuroImage, 72, 193–206. https://doi.org/10.1016/j.neuroimage.2013.01.048
Usher, M., & McClelland, J. L. (2001). The time course of perceptual choice: The leaky, competing accumulator model. Psychological Review, 108(3), 550–592.
Vehtari, A., & Lampinen, J. (2002). Bayesian model assessment and comparison using cross-validation predictive densities. Neural Computation, 14(10), 2439–2468. https://doi.org/10.1162/08997660260293292
Widrow, B., & Hoff, M. E. (1960). Adaptive switching circuits. IRE WESCON Convention Record, 96–104.
Zucchini, W. (2000). An introduction to model selection. Journal of Mathematical Psychology, 44(1), 41–61. https://doi.org/10.1006/jmps.1999.1276